Sirtuin 1 Regulates SREBP-1c Expression in a LXR-Dependent Manner in Skeletal Muscle
نویسندگان
چکیده
Sirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase, has emerged as a main determinant of whole body homeostasis in mammals by regulating a large spectrum of transcriptional regulators in metabolically relevant tissue such as liver, adipose tissue and skeletal muscle. Sterol regulatory element binding protein (SREBP)-1c is a transcription factor that controls the expression of genes related to fatty acid and triglyceride synthesis in tissues with high lipid synthesis rates such as adipose tissue and liver. Previous studies indicate that SIRT1 can regulate the expression and function of SREBP-1c in liver. In the present study, we determined whether SIRT1 regulates SREBP-1c expression in skeletal muscle. SREBP-1c mRNA and protein levels were decreased in the gastrocnemius muscle of mice harboring deletion of the catalytic domain of SIRT1 (SIRT1(Δex4/Δex4) mice). By contrast, adenoviral expression of SIRT1 in human myotubes increased SREBP-1c mRNA and protein levels. Importantly, SREBP-1c promoter transactivation, which was significantly increased in response to SIRT1 overexpression by gene electrotransfer in skeletal muscle, was completely abolished when liver X receptor (LXR) response elements were deleted. Finally, our in vivo data from SIRT1(Δex4/Δex4) mice and in vitro data from human myotubes overexpressing SIRT1 show that SIRT1 regulates LXR acetylation in skeletal muscle cells. This suggests a possible mechanism by which the regulation of SREBP-1c gene expression by SIRT1 may require the deacetylation of LXR transcription factors.
منابع مشابه
Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor.
Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP-binding cassette A1-dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory...
متن کاملIdentification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter.
In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRalpha) and LXRbeta as strong activat...
متن کاملInsulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements.
The enhanced synthesis of fatty acids in the liver and adipose tissue in response to insulin is critically dependent on the transcription factor SREBP-1c (sterol-regulatory-element-binding protein 1c). Insulin increases the expression of the SREBP-1c gene in intact liver and in hepatocytes cultured in vitro. To learn the mechanism of this stimulation, we analysed the activation of the rat SREBP...
متن کاملExpression of SREBP-1c Requires SREBP-2-mediated Generation of a Sterol Ligand for LXR in Livers of Mice
The synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination...
متن کاملInsulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs.
In the present study, we aimed to decipher the mechanisms involved in the transcriptional effect of insulin on the SREBP-1c specific promoter of the human srebf-1 gene. Using luciferase reporter gene constructs in HEK-293 cells (human embryonic kidney cells), we demonstrated that the full effect of insulin requires the presence of SREs (sterol response elements) in the proximal region of the pr...
متن کامل